

New Approaches to Reacting Flow Modeling for Endothermic Fuel Cracking and Combustion in High-Speed Combustion

G. Blanquart Caltech

R. K. Hanson Stanford University

W. L. Hase Texas Tech

K. Morokuma Kyoto University/Emory University

H. Wang USC

Objectives

Intermediate term

Mechanisms of early-stage homogeneous coking and methods to suppress PAH coalescence/reaction.

Long term

Enable new approaches to kinetic modeling.

The Problem

Combustor

- Burns cracked fuel –
 composition coupled to cooling
 system operation and design
- Shocks and wide range of ϕ .
- Flame processes may be facilitated by the use of catalysts
- Fuel cracking in the cooling system gives heat sinking capability, but also promote coke formation.
 - Fuel cracking and coke formation driven by the same force entropy!

Thermodynamic Driving Forces

The Problem

Fuel pyrolysis to remove heat
 Cracked products give better combustion performance
 Coke formation is a problem
 May use catalysts

Combustor

- Burns cracked fuel –
 composition coupled to cooling
 system operation and design
- Shocks and wide range of ϕ .
- Flame processes may be facilitated by the use of catalysts
- Fuel cracking in cooling system gives heat sinking capability, but also promote coke formation.
 - Fuel cracking and coke formation driven by the same force entropy!
 - The processes are kinetically controlled (and supercritical).
- Three types of coke deposits (Edwards 2003)
 - Filamentous fluid/surface interactions in origin and controllable by surface materials engineering).
 - Amorphous and graphitic PAHs formed in the fluid phase "coalesce" into particulates which deposit on walls – a key problem to be addressed.

PAHs as Intermediates to Coke

Wornat (2007)

HPLC Retention time [min]

- Amorphous and graphitic wall deposits are presumably from particulate matters due to PAH-PAH coalescence/reaction.
- PAH binding mechanisms not well established: dispersion/electrostatic interactions, excited states, dynamic bonding etc.

The Problem

Fuel pyrolysis to remove heat Cracked products give better combustion performance Coke formation is a problem May use catalysts

Combustor

- Burns cracked fuel composition coupled to cooling system operation and design
- Shocks and wide range of ϕ .
- Flame processes may be facilitated by the use of catalysts
- Fuel cracking in the endothermic cooling system gives better heat sinking capability, but also promote coke formation.
 - Fuel cracking and coke formation driven by the same force entropy!
 - The processes are kinetically controlled.
- Three types of coke deposits
 - Filamentous fluid/surface interactions in origin and controllable by surface materials engineering).
 - Amorphous and graphitic PAHs formed in the fluid phase "coalesce" into particulates which deposit on walls – a key problem to be addressed.
- A highly coupled kinetic problem how do we generate chemical reaction models directly from results of ab initio theory?

Working Hypotheses/Questions(1)

The Coking Problem

- 1. Fuel pyrolysis and PAH/coke formation share the same thermodynamic driving force. It is impossible to maximize fuel pyrolysis while suppress PAH formation at the same time.
- 2. Suppressing PAH-PAH coalescence/reaction is feasible, because such processes do not yield large Gibbs free energy drop.
 - Fundamental binding interactions among PAHs (purely dispersion/ electrostatic forces or also involves other *unknown* interactions electronically excited states, π diradicals etc).
 - Dynamic effects under supercritical condition.
 - If these interactions/effects can be understood, is there an additive that can trick PAHs into disliking each other.

Working Hypotheses/Questions(2)

The Long-Term Combustion Chemistry Problem

- 1. Looking for an approach more robust and more "ab initio" than the current chemistry modeling approach.
 - Designs of endothermic cooling system and combustors are evolving;
 - New catalysts are being developed
 - Long lead-time to develop any predictive, coupled kinetic models
 - High pressure/supercritical kinetics rate theory (and its application) falls apart.
 - **—**
- 2. We have been using the approach of detailed kinetic modeling for more than 50 years.
 - Is this the only "fundamental" approach we can take?
 - Do we need to write out thousands of reactions before we can make a prediction about the kinetic and heat release rates?

Potential Energy Landscape and Associated Approaches

 A concept widely used in protein folding kinetics (Joseph Bryngelson)

Wales & Bogdan JPCB (2006)

• and in materials/fuel cell research.

Potential Energy Landscape and Associated Approaches

 Accuracy of kinetic prediction may be improved, as needed, by adapting the resolution of potential energy.

Onuchic & Wolynes Current Opinion in Structural Biology (2004)

RCCE and Potential Energy Landscaping (RCCE-PEL)

Oth order potential energy landscape

- No reaction steps → Infinite rate kinetics
- The end state represents chemical equilibrium

Higher-order potential energy landscapes

- Slow(er) reaction steps added equivalent to adding details (barriers and local minima) into the potential energy landscape
- Finite rate kinetics with accuracy improved by an adaptive approach to adding PES details
- Converging chemical time scale ↔ physical time scale (flow, turbulence, transport)

The Team

Guillaume Blanquart
CalTech

Guillaume Blanquart • PEL-RCCE in turbulent reacting flow modeling

Ronald K. Hanson Stanford

• Experimental method developments T(t), H(t), S(t), G(t)

William L. Hase Texas Tech

Chemical dynamics

 aromatic interactions and binding post-transition state dynamics

Keiji Morokuma Emory/Kyoto U.

Automated PES search methods

Hai Wang USC

- PEL-RCCE theory and application
- PAH-PAH binding interactions/coalescence suppression
- Nanocatalysts

Rate-Controlled Constrained-Equilibrium (RCCE)

Keck & Gillespie (1971); Keck (1990); Beretta et al. (2012)

The method of Lagrange Multipliers as applied to chemical equilibrium

$$L = \frac{G}{R_{u}T} + \sum_{m=1}^{M} \lambda_{m} \left(\sum_{k=1}^{K} a_{mk} n_{k} - e_{m} \right)$$

The equilibrium composition is given as

$$n_{k} = n_{0} \exp \left[-\frac{g_{k}^{o}(T)}{R_{u}T} - \ln \frac{p}{p^{0}} - \sum_{m=1}^{M} \lambda_{m} a_{mk} \right]$$
$$= n_{0} Q_{k} \exp \left[-\sum_{m=1}^{M} \lambda_{m} a_{mk} \right]$$

where the multipliers are solved by

$$e_{m} = n_{0} \sum_{k=1}^{K} a_{mk} Q_{k} \exp\left[-\sum_{m=1}^{M} \lambda_{m} a_{mk}\right] \quad (m = 1, ...M \text{ elements})$$

$$1 = \sum_{k=1}^{K} Q_{k} \exp\left[-\sum_{m=1}^{M} \lambda_{m} a_{mk}\right]$$

Rate-Controlled Constrained-Equilibrium (RCCE)

Keck & Gillespie (1971); Keck (1990); Beretta et al. (2012)

For non-equilibrium problems, additional constraints are added as needed, preferably starting from rate limiting steps:

$$e_{l} = \sum_{k=1}^{K} a_{lk} n_{k} \quad (l - m = 1, ...R)$$

$$\frac{d(e_{l}/V)}{dt} = \sum_{k=1}^{K} a_{lk} \frac{d(n_{k}/V)}{dt}$$

$$= \sum_{k=1}^{K} a_{lk} \left(\sum_{l=1}^{s_{l}} v_{kl} R_{lf} - \sum_{l=1}^{s_{l}} v'_{kl} R_{lb}\right)$$

- Yields the exact solution when the number of constraining equations R = number of reactions I (Keck 1990).
- Good quality, converging solution achieved usually with R « I.
- A mechanism reduction method allowing for separation of time scales still require a (detailed) reaction mechanism to be made available.

Principle Questions Yet to be Addressed

- Can a potential energy landscape (PEL) approach be developed from ab initio methods?
- Can the rate limiting steps on the PEL be identified in a robust manner?
- Can new experimental approaches be developed to interrogate parts of a PEL?
- What are the role of the better known H_2/C_1-C_4 chemistry in the RCCE-PEL approach?
- Can the RCCE-PEL approach be implemented in turbulent flame simulations?

Current Approach

- Methodology based on Dixon-Lewis's work in the 1960s'.
 - Write down every reaction step and find its rate coefficient.
 - H₂, H₂/CO etc with ~ 2 dozen reactions.
 - Can have a closure because of a limited number of rate parameters.
 - Allowed us to understand the detailed laminar flame structure.
- Later work by many focused on combustion chemistry of small hydrocarbons – O(100) reactions – many of which have been probed directly by experiments and rate theory calculations.
- Recent effort for large hydrocarbons largely based on empirical knowledge
 - group additivity
 - analogous reactions reaction class
 - guesses

Current Approach

 The number of species/reactions increases exponentially as the fuel size increases.

Current Approach

• The number of species/reactions increases exponentially as the fuel size increases.

 A solar system model built on the position and velocity of each and every planet is a triumph of science. A milky-way galaxy model built on the position and velocity of each plant and star is probably a terrible model.

Combustion Reaction Mechanism Development

- Methods of mechanism reduction becomes mature.
 - Still require detailed reaction models to be made available
 - The number of scalars remain large, perhaps too large to incorporate in CFD codes (high-speed combustion) for years to come
- Rethink our strategy for treating chemistry.
 - Adaptive resolution/accuracy
 - Key property to follow: time evolution of energy and entropy
 - Throw away the concept of reaction mechanism for the moment
 - Focus on the potential energy surface some initial thoughts in the context of Keck's RCCE